Harnessing evolutionary fitness in Plasmodium falciparum for drug discovery and suppressing resistance.

نویسندگان

  • Amanda K Lukens
  • Leila Saxby Ross
  • Richard Heidebrecht
  • Francisco Javier Gamo
  • Maria J Lafuente-Monasterio
  • Michael L Booker
  • Daniel L Hartl
  • Roger C Wiegand
  • Dyann F Wirth
چکیده

Drug resistance emerges in an ecological context where fitness costs restrict the diversity of escape pathways. These pathways are targets for drug discovery, and here we demonstrate that we can identify small-molecule inhibitors that differentially target resistant parasites. Combining wild-type and mutant-type inhibitors may prevent the emergence of competitively viable resistance. We tested this hypothesis with a clinically derived chloroquine-resistant (CQ(r)) malaria parasite and with parasites derived by in vitro selection with Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. We screened a chemical library against CQ(s) and CQ(r) lines and discovered a drug-like compound (IDI-3783) that was potent only in the CQ(r) line. Surprisingly, in vitro selection of Plasmodium falciparum resistant to IDI-3783 restored CQ sensitivity, thereby indicating that CQ might once again be useful as a malaria therapy. In parallel experiments, we selected P. falciparum lines resistant to structurally unrelated PfDHODH inhibitors (Genz-666136 and DSM74). Both selections yielded resistant lines with the same point mutation in PfDHODH:E182D. We discovered a compound (IDI-6273) more potent against E182D than wild-type parasites. Selection of the E182D mutant with IDI-6273 yielded a reversion to the wild-type protein sequence and phenotype although the nucleotide sequence was different. Importantly, selection with a combination of Genz-669178, a wild-type PfDHODH inhibitor, and IDI-6273, a mutant-selective PfDHODH inhibitor, did not yield resistant parasites. These two examples demonstrate that the compromise between resistance and evolutionary fitness can be exploited to design therapies that prevent the emergence and spread of resistant organisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers

Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...

متن کامل

Chemogenomic profiling of Plasmodium falciparum as a tool to aid antimalarial drug discovery

The spread of Plasmodium falciparum multidrug resistance highlights the urgency to discover new targets and chemical scaffolds. Unfortunately, lack of experimentally validated functional information about most P. falciparum genes remains a strategic hurdle. Chemogenomic profiling is an established tool for classification of drugs with similar mechanisms of action by comparing drug fitness profi...

متن کامل

داروهای ضدمالاریا

One of the most important drug which use in malaria treatment is chloroguine, this drug has schizontocidal effect (except in the cases of plasmodium falciparum resistance to chloroquine). Primaquine had effect on exoerythrocytic stage of malaria parasite and use for radical cure of malaria. Quinine is a useful drug especially in cerebral malaria treatment. Today antibiotic. Mefloquine , su...

متن کامل

Clinical Pharmacology of the Antimalarial Artemisinin-Based Combination and other Artemisinins in Children

In 2010, there were estimated 219 million cases of malaria resulting in 666,000 deaths and two-thirds were children. Children are more vulnerable than adults to malaria parasites. In sub-Saharan African countries, maternal malaria is associated with up to 200,000 estimated infant deaths yearly. Malaria is caused by five Plasmodium parasites namely: Plasmodium falciparum, Plasmodium vivax, Plasm...

متن کامل

Fitness of artemisinin-resistant Plasmodium falciparum in vitro.

OBJECTIVES Drug resistance confers a fitness advantage to parasites exposed to frequent drug pressure, yet these mutations also may incur a fitness cost. We assessed fitness advantages and costs of artemisinin resistance in Plasmodium falciparum in vitro to understand how drug resistance will spread and evolve in a competitive environment. METHODS Genotyping of SNPs, drug susceptibility assay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 2  شماره 

صفحات  -

تاریخ انتشار 2014